

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

SUMMER 2014

GCE CHEMISTRY – CH5

SUMMER 2014 MARK SCHEME

SECTION A

Q.1	(a)	(i)	$NH_4^+(aq)$	$+ OH^{-}(aq) $	► NH ₃ (aq) -	$-NH_3(aq) + H_2O(l)$		
			Acid 1 (1 mark for	Base 2 r each pair)	Base 1	Acid 2	[2]	

(b) (i)

	$[\mathrm{NH_4}^+(\mathrm{aq})]/\mathrm{mol}\ \mathrm{dm}^{-3}$	$[NO_2^{-}(aq)]/mol dm^{-3}$	Initial rate/mol dm ⁻³ s ⁻¹		
1	0.200	0.010	4.00×10^{-7}		
2	0.100	0.010	2.00×10^{-7}		
3	0.200	0.030	1.20×10^{-6}		
4	0.100	0.020	4.00×10^{-7}		
(1 mark for each correct answer)					

(ii)
$$k = \frac{4.00 \times 10^{-7}}{0.200 \times 0.010} = 2.0 \times 10^{-4}$$
 (1)
Units = mol⁻¹ dm³ s⁻¹ (1)

(iv) Increases

If temperature is increased rate increases (1)

and since concentrations do not change the rate constant must increase [2] (or similar) (1)

Total [10]

[2]

Q.2
(a)
$$K_w = [H^+][OH^-]$$
(1)
(1)

(b) (i) In pure water $[H^+] = [OH^-]$ or $[H^+] = \sqrt{1.0 \times 10^{-14}}$
(1)
pH

 $pH = -log \ 10^{-7} = 7$
(1)
(2]

(ii) Final volume of solution is 1000 cm³ so acid has been diluted by a factor of 100 so final concentration of acid is 0.001
(1)
(2]

(ii) Final volume of solution is 1000 cm³ so acid has been diluted by a factor of 100 so final concentration of acid is 0.001
(1)
(2]

(c) 1.78 × 10^{-5} = $[H^+] \times 0.02$
(1)
(1)
(2]

(c) 1.78 × 10^{-5} = $[H^+] \times 0.02$
(1)
(1)
[3]

(d) The solution is a buffer
(1)
(1)
[3]

(d) The solution is a buffer
(1)
(1)
(1)

Solution contains a large amount of CH₃COOH and CH₃COO⁻ ions (Accept correct equations)
(1)
(1)

When an acid is added, the CH₃COO⁻ ions react with the H⁺ ions, removing them from solution and keeping the pH constant
(1)
[3]

Total [12]

PMT

PMT

Q.3 (a)
$$\dots \dots$$
 [1]

(b)
$$20 \text{ dm}^3 \text{ oxygen} = 0.83 \text{ mol}$$
 (1)
Moles $H_2O_2 = 1.67$ and $[H_2O_2] = 1.67 \text{ mol dm}^{-3}$ (1) [2]

Electrons absorb (visible light) energy to jump from lower level to higher level (1)

The colour is that due to the remaining / non-absorbed frequencies (1) (Appropriate diagrams are acceptable alternatives)

[4]

QWC Legibility of text; accuracy of spelling, punctuation and grammar, clarity of meaning [1]

(d) (i)
$$MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$$
 [1]

(ii)
$$5H_2O_2 + 6H^+ + 2MnO_4^- \longrightarrow 2Mn^{2+} + 5O_2 + 8H_2O$$
 [2]

(Mark consequentially from (i) - 1 mark if formulae correct but equation not balanced properly)

(iii) Moles
$$MnO_4^- = 0.02 \times 14.8 = 2.96 \times 10^{-4}$$
 (1)
1000

Moles
$$H_2O_2 = 7.40 \times 10^{-4}$$
 (1)

Concentration
$$H_2O_2 = \frac{7.40 \times 10^{-4}}{0.020} = 0.037 \text{ mol dm}^{-3}$$
 (1) [3]

Total [18]

PMT

SECTION B

Q.4	(a)	(i)	Oxidising agent				[1]		
		(ii)	A = lead(II) chloride $B = chlorine / Cl_2$	/ PbCl ₂	(1)		[2]		
				2	(1)		[4]		
		(iii)	$[Pb(OH)_6]^{+-}/ [Pb(O$	H) ₄] ²⁻ / Na ₄ [$Pb(OH)_6$] etc.		[1]		
		(iv)	Yellow				[1]		
		(v)	PbO + 2HNO ₃ —		$Pb(NO_3)_2 + H_2O$		[1]		
	(b)	(i)	Each C atom covalen	tly bonded to	o three other C atoms for	ming lay (1)	vers		
			Layers held together	by weak inte	rmolecular forces	(1)			
			BN is isoelectronic w	vith C so it fo	orms similar structures	(1)			
			Graphite conducts ele each N has a full unb unbonded p-orbital so	ectricity since onded p-orbi o it does not	e electrons are delocalise tal and each B has an en conduct electricity	ed but in hpty (1)	BN, [4]		
			(Accept electrons are not delocalised in BN so it does not conduct electricity)						
			<i>QWC</i> The information is organised clearly and coherently, using specialist vocabulary where appropriate [1]						
		(ii)	Wear-resistant coatin electronic componen	gs/catalyst s ts / drills in i	upport/for mounting higl ndustry / cutting instrum	n power ents	[1]		
	(c)	(i)	$\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \ \Delta \mathbf{S}$	$(\Delta G = 0 \text{ for})$	r reaction to be spontane	ous)	(1)		
			T = 1.92 0.0067		(1)				
			T = 286.6 K		(1)		[3]		
		(ii)	Changes in temperatu change form making	are (above or it unstable (a	below 286.6 K) caused and causing it to disinteg	the tin to rate)	, [1]		

(d)	(i)	(At the anode)	$H_2 \longrightarrow 2H^+ + 2e^-$			
		(At the cathode)	$O_2 + 4H^+ + 4e^- \longrightarrow 2H_2O$	(1)		
		(Overall reaction)	$2H_2 + O_2 \longrightarrow 2H_2O$	(1)		
				[3]		

(ii) Hydrogen is difficult to store / takes up large volume / too flammable / explosive / produced from fossil fuels which leads to a net energy loss / Pt electrodes very expensive [1]

Total [20]

Q.5	(a)	(i)	Cold	$Cl_2 + 2N$	aOH ——	►	NaCl + N	aClO + H	$_{2}O$	(1)
			Warm	$3Cl_2 + 6l_2$	NaOH —		5NaCl +	NaClO ₃ +	- 3H ₂ O	(1)
										[2]
		(ii)	Dispro	portionatio	n					[1]
	(b)	P can P can	(extend ² promote	the normal	octet of ele n to 3d orbi	ectrons) tal	by using 3	d orbitals /)		
		N can	not do th	is since it	is in the sec	ond per	riod / 3d orl	, bitals not a	vailable	(1) [2]
	(c)	The te	rms invo	olved are: l	attice break	ting ent	halpy whic	h is endoth	ermic	(1)
		and hy	dration	enthalpy w	hich is exo	thermic	;			(1)
		ΔH so	lution =	ΔH lattice	breaking +	ΔH hy	dration (or	similar)		(1)
		If ∆H	solution	is negative	e then the ic	onic sol	id will be s	oluble		(1)
										[4]
		QWC comple	Selection exity of s	on of a forn subject ma	n and style tter	of writi	ng appropr	riate to pur	pose an	d to [1]
	(d)	(i)	Iodide Only o Fe ³⁺ , F (2 nd ma	ne with les e ²⁺ half-ce ark can be	(1) s positive s ll (1) obtained fro	tandard om calc	potential tl ulation valu	han 1e and state	ment)	[2]
		(ii)	Pt(s)	Fe ²⁺ (aq), F = 1.45 – 0.′	$e^{3^+}(aq) \ Ce^{77} = 0.68 V$	e ⁴⁺ (aq), ∕	$\operatorname{Ce}^{3+}(\operatorname{aq}) P$	t (s)	(1) (1)	[2]
	(e)	(i)	$K_c = \underline{[C]}$	<u>CH₃COOC</u> H₃COOH]	<u>H3][H2O]</u> [CH3OH]			(1)		
			No uni	ts				(1)		[2]
		(ii)	moles	$= \frac{1.25 \times 32}{1000}$	2.0 = 0.04(0))				[1]
		(iii)	[CH ₃ C	OOH] = 0.	04, therefor	e 0.06	used in read	ction and		
			[CH ₃ C	OOCH ₃] =	0.06, [H ₂ O	0] = 0.00	5 and			
			[CH ₃ O	[H] = 0.083	0 - 0.06 = 0	.023		(1)		
			$K_{c} = \underline{0}.$	$\frac{.06 \times 0.06}{.04 \times 0.023}$	= 3.91			(1)		[2]
		(iv)	Value of the form	of K _c decre ward reacti	eases since t on is exoth	the equi ermic	librium shi	fts to the le	eft /	[1]
									Total	[20]